regdatadescription
regdatadescription ¶
Module for RegDataDescription
Classes¶
FeatureType ¶
          RegDataDescription
  
  
      dataclass
  
¶
  
            Bases: InputVectorDataDescription, OutputVectorDataDescription
DataDescription for Regression data. Uses vectors as input and output
Functions¶
get_dict ¶
get_input_entry_names ¶
Returns names of input entries
Source code in niceml/data/datadescriptions/regdatadescription.py
            get_input_size ¶
get_min_max_vals ¶
Get min and max values for categorical and binary input values
Source code in niceml/data/datadescriptions/regdatadescription.py
            get_output_entry_names ¶
Returns names of targets
Source code in niceml/data/datadescriptions/regdatadescription.py
            
          Functions¶
get_feature_size ¶
Returns size of features in 'features' dictionary
Source code in niceml/data/datadescriptions/regdatadescription.py
            inputs_prefix_factory ¶
The inputs_prefix_factory function is a factory function that returns a list of input features as dictionaries.
Parameters:
- 
        data_location(Union[dict, LocationConfig]) –Specify the location of the data 
- 
        prefix(str) –Filter the columns in the dataframe 
- 
        feature_type(str) –Specify the type of feature 
- 
        data_file_name(str, default:'train.parq') –Specify the name of the file to be read from data_location 
Returns: A list of input features as dictionaries
Source code in niceml/data/datadescriptions/regdatadescription.py
            load_data_infos ¶
Loads and returns RegDataDescription from yaml-path
Source code in niceml/data/datadescriptions/regdatadescription.py
            
          reg_data_description_factory ¶
The reg_data_description_factory function is a factory function that returns a RegDataDescription object.The RegDataDescription object contains the inputs and targets of the regression data set. The reg_data_description_factory function takes in arguments for: - train_data_location: The location of the training data set - train_set_file name: The name of the training data set file - filter function: A filtering function to apply to each row in order to extract input and target features from it
Parameters:
- 
        train_data_location(Union[dict, LocationConfig]) –The location of the training data set 
- 
        train_set_file_name(str) –The name of the training data set file 
- 
        filter_function(FunctionType) –A filtering function to apply to each row in order to extract input and target features from it 
- 
        **kwargs–Pass in additional arguments to the filter_functions 
Returns:
- 
            RegDataDescription–A RagDataDescription with inputs and targets created by the filter_function