regdatadescription
regdatadescription ¶
Module for RegDataDescription
Classes¶
FeatureType ¶
RegDataDescription
dataclass
¶
Bases: InputVectorDataDescription
, OutputVectorDataDescription
DataDescription for Regression data. Uses vectors as input and output
Functions¶
get_dict ¶
get_input_entry_names ¶
Returns names of input entries
Source code in niceml/data/datadescriptions/regdatadescription.py
get_input_size ¶
get_min_max_vals ¶
Get min and max values for categorical and binary input values
Source code in niceml/data/datadescriptions/regdatadescription.py
get_output_entry_names ¶
Returns names of targets
Source code in niceml/data/datadescriptions/regdatadescription.py
Functions¶
get_feature_size ¶
Returns size of features in 'features' dictionary
Source code in niceml/data/datadescriptions/regdatadescription.py
inputs_prefix_factory ¶
The inputs_prefix_factory function is a factory function that returns a list of input features as dictionaries.
Parameters:
-
data_location
(Union[dict, LocationConfig]
) –Specify the location of the data
-
prefix
(str
) –Filter the columns in the dataframe
-
feature_type
(str
) –Specify the type of feature
-
data_file_name
(str
, default:'train.parq'
) –Specify the name of the file to be read from data_location
Returns: A list of input features as dictionaries
Source code in niceml/data/datadescriptions/regdatadescription.py
load_data_infos ¶
Loads and returns RegDataDescription from yaml-path
Source code in niceml/data/datadescriptions/regdatadescription.py
reg_data_description_factory ¶
The reg_data_description_factory function is a factory function that returns a RegDataDescription object.The RegDataDescription object contains the inputs and targets of the regression data set. The reg_data_description_factory function takes in arguments for: - train_data_location: The location of the training data set - train_set_file name: The name of the training data set file - filter function: A filtering function to apply to each row in order to extract input and target features from it
Parameters:
-
train_data_location
(Union[dict, LocationConfig]
) –The location of the training data set
-
train_set_file_name
(str
) –The name of the training data set file
-
filter_function
(FunctionType
) –A filtering function to apply to each row in order to extract input and target features from it
-
**kwargs
–Pass in additional arguments to the filter_functions
Returns:
-
RegDataDescription
–A RagDataDescription with inputs and targets created by the filter_function